metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[aqua(dipyrido[3,2-a:2',3'c]phenazine)cobalt(II)]-μ-benzene-1,4dicarboxylato]

Fang-Wei and Ze-Min Mei*

Department of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China

Correspondence e-mail: fangwei1026@yahoo.com.cn

Received 2 November 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.047; *wR* factor = 0.114; data-to-parameter ratio = 12.4.

In the title compound, $[Co(C_8H_4O_4)(C_{18}H_{10}N_4)(H_2O)]_n$, the Co^{II} atom is six-coordinated by three O atoms from two benzene-1,4-dicarboxylate (1,4-BDC) dianions (one bidentate and one monodentate), one water molecule and two N atoms from a bidentate dipyrido[3,2-*a*:2',3'-*c*]phenazine ligand, resulting in a distorted *cis*-CoO₄N₂ octahedral geometry. The Co^{II} atoms are bridged by the 1,4-BDC ligands, forming a single-chain polymer structure. Both BDC ligands are centrosymmetric. Neighbouring chains interact through π - π interactions [minimum centroid–centroid separation = 3.459 (2) Å] and O–H···O hydrogen bonds.

Related literature

For related structures, see: Li *et al.* (2006, 2007). For the ligand synthesis, see: Dickeson & Summers (1970).

Experimental

Crystal data

 $\begin{bmatrix} Co(C_8H_4O_4)(C_{18}H_{10}N_4)(H_2O) \end{bmatrix}$ $M_r = 523.36$ Monoclinic, $P2_1/n$ a = 10.5218 (19) Å b = 11.742 (2) Å c = 18.077 (3) Å $\beta = 101.281$ (4)°

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{min} = 0.815, T_{max} = 0.924$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.114$	independent and constrained
S = 0.88	refinement
4317 reflections	$\Delta \rho_{\rm max} = 1.70 \text{ e } \text{\AA}^{-3}$
349 parameters	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

V = 2190.2 (7) Å³

Mo $K\alpha$ radiation $\mu = 0.83 \text{ mm}^{-1}$

 $0.47 \times 0.21 \times 0.10 \text{ mm}$

11590 measured reflections

4317 independent reflections

2417 reflections with $I > 2\sigma(I)$

T = 292 (2) K

 $R_{\rm int} = 0.059$

Z = 4

Table 1

Selected geometric parameters (Å, °).

Co1-O4	2.020 (3)	Co1-N2	2.122 (3)
Co1-O3	2.080 (3)	Co1-N1	2.182 (3)
Co1-O1	2.119 (3)	Co1-O2	2.250 (3)
N2-Co1-N1	75.79 (12)	O1-Co1-O2	60.22 (10)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$03-H3WA\cdots01^{i}$ $03-H3WB\cdots05^{i}$	0.96 (5)	2.00 (5)	2.877 (4)	151 (4)
	0.73 (5)	1.94 (5)	2.666 (4)	179 (6)

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL-Plus*.

The authors thank BaiCheng Normal College for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2627).

References

Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2002). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.

Li, C.-B., Fang, W., Dong, E.-J., Liu, B. & Li, Y.-W. (2007). Acta Cryst. E63, m150-m152.

Li, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312-m1314.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m3098-m3099 [doi:10.1107/S1600536807056826]

catena-Poly[[aqua(dipyrido[3,2-*a*:2',3'-*c*]phenazine)cobalt(II)]-µ-benzene-1,4-dicarboxylato]

Fang-Wei and Z.-M. Mei

Comment

1,10-Phenanthroline (phen) and its derivatives are important ligands with numerous uses in the constructon of metal-organic complexes. Supramolecular architectures based on the dipydo[3,2 - a:2',3'-c]phenazine (Dppz) molecule have considerably less attention (Li *et al.*, 2006) As part of our ongoing studies in this area (Li *et al.*, 2007), we now report the sythesis and structure of the title compound,(I), containing Co_{II} ions, 1,4-BDC anions and phe-derived dipydo[3,2 - a:2',3'-c]phenazine (C₁₈H₁₀N₄) ligands.

In compound (I), the Co^{II} atom is six-coordinated by two N atoms from one Dppz molecule, three O atoms from two 1,4-BDC dianions (one monodentate, one bidentate) and one water molecule (Fig. 1, Table 1): a distorted octahedral *cis*-CoN₂O₄ arrangement is formed.

Neighboring Co^{II} atoms are bridged by the centrosymmetric 1,4-BDC ligands forming a one-dimensional chain structure (Fig. 2). In the crystal structure, adjacent chains are connected through π - π interactions between dppz and 1,4-BDC ligands with a minimum centroid-centroid stacking distance of 3.459 (2) Å. O—H…O hydrogen bonds involving the water molecules and carboxylate O atom acceptors (Table 2) complete the structure of (I).

Experimental

The Dppz ligand was synthesized by the literature method of Dickeson & Summers (1970). A mixture of $CoCl_2 \cdot 2H_2O$ (0.3 mmol), Dppz (0.1 mmol) and benzene-1,4-dicarboxylic acid (0.3 mmol) in 30 ml of distilled water was stirred thoroughly for 1 h at ambient temperature. The pH value was adjusted to about 7.5 with NaOH aqueous solution. The suspension was sealed in a Teflon-lined stainless reaction vessel (40 ml) and heated at 443 K for 5 days. The vessel was cooled slowly to room temperature at a rate of 10 K h⁻¹ before opening, and purple blocks of (I) were recovered.

Refinement

The water H atoms were located in a difference map and freely refined. The C-bound H atoms were placed geometrically (C-H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$. The highest difference peak is 1.05Å from H2B.

Figures

Fig. 1. The asymmetric unit of (I), together with additional atoms to complete the coordination of Co1 with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, -y, 1 - z.

Fig. 2. A view of the polymeric chain structure of (I). H atoms have been omitted for clarity.

catena-Poly[[aqua(dipyrido[3,2 - a:2',3'-c]phenazine)cobalt(II)]-µ-benzene- 1,4-dicarboxylato]

Crystal data	
[Co(C ₈ H ₄ O ₄)(C ₁₈ H ₁₀ N ₄)(H ₂ O)]	$F_{000} = 1068.0$
$M_r = 523.36$	$D_{\rm x} = 1.587 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1368 reflections
<i>a</i> = 10.5218 (19) Å	$\theta = 2.3 - 26.1^{\circ}$
b = 11.742 (2) Å	$\mu = 0.83 \text{ mm}^{-1}$
c = 18.077 (3) Å	T = 292 (2) K
$\beta = 101.281 \ (4)^{\circ}$	Block, purple
V = 2190.2 (7) Å ³	$0.47 \times 0.21 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII diffractometer	4317 independent reflections
Radiation source: fine-focus sealed tube	2417 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.059$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{max} = 26.0^{\circ}$
T = 292(2) K	$\theta_{\min} = 2.1^{\circ}$
ω scans	$h = -12 \rightarrow 10$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$k = -14 \rightarrow 11$
$T_{\min} = 0.815, T_{\max} = 0.924$	$l = -20 \rightarrow 22$
11590 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.114$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0475P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.88	$(\Delta/\sigma)_{\rm max} = 0.001$
4317 reflections	$\Delta \rho_{max} = 1.70 \text{ e } \text{\AA}^{-3}$
349 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returned a structure invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Col	0.49412 (5)	0.06855 (4)	0.63798 (3)	0.03467 (18)
01	0.3496 (3)	-0.0366 (2)	0.57392 (15)	0.0440 (7)
O2	0.2835 (3)	0.1061 (2)	0.63506 (15)	0.0487 (8)
O3	0.6371 (3)	0.0100 (3)	0.58260 (19)	0.0450 (8)
N1	0.5516 (3)	-0.0670 (3)	0.72031 (16)	0.0367 (8)
C5	0.6497 (3)	-0.0620(3)	0.9301 (2)	0.0363 (9)
N3	0.6541 (3)	0.1013 (3)	1.01155 (18)	0.0431 (9)
N4	0.6879 (3)	-0.1346 (3)	0.98703 (19)	0.0451 (9)
N2	0.5349 (3)	0.1544 (3)	0.74323 (17)	0.0380 (8)
C6	0.7111 (4)	-0.0898 (4)	1.0577 (2)	0.0437 (11)
C4	0.6252 (4)	-0.1065 (3)	0.8530 (2)	0.0367 (10)
C18	0.5825 (3)	-0.0328 (3)	0.7924 (2)	0.0326 (9)
C12	0.6338 (3)	0.0564 (3)	0.9431 (2)	0.0368 (9)
C10	0.7204 (4)	0.0719 (4)	1.1443 (2)	0.0578 (13)
H10A	0.7108	0.1493	1.1527	0.069*
C13	0.5971 (4)	0.1338 (3)	0.8784 (2)	0.0373 (10)
C17	0.5705 (3)	0.0889 (3)	0.8059 (2)	0.0337 (9)

C19	0.2598 (4)	0.0287 (4)	0.5870 (2)	0.0401 (10)
C11	0.6939 (4)	0.0280 (4)	1.0695 (2)	0.0447 (11)
C1	0.5651 (4)	-0.1773 (3)	0.7058 (2)	0.0471 (11)
H1B	0.5425	-0.2025	0.6562	0.057*
C3	0.6421 (4)	-0.2206 (4)	0.8354 (2)	0.0489 (11)
H3B	0.6739	-0.2724	0.8734	0.059*
C14	0.5886 (4)	0.2511 (4)	0.8866 (2)	0.0520 (12)
H14A	0.6084	0.2842	0.9342	0.062*
C8	0.7748 (4)	-0.1170 (5)	1.1915 (3)	0.0652 (15)
H8A	0.8001	-0.1649	1.2327	0.078*
C2	0.6120 (4)	-0.2560 (4)	0.7623 (2)	0.0564 (13)
H2B	0.6225	-0.3319	0.7502	0.068*
C16	0.5236 (4)	0.2654 (3)	0.7536 (2)	0.0490 (12)
H16A	0.4958	0.3109	0.7115	0.059*
C9	0.7600 (4)	0.0000 (5)	1.2033 (3)	0.0633 (14)
H9A	0.7773	0.0288	1.2522	0.076*
C7	0.7525 (4)	-0.1619 (4)	1.1197 (2)	0.0551 (12)
H7A	0.7647	-0.2392	1.1124	0.066*
C15	0.5509 (5)	0.3175 (4)	0.8239 (2)	0.0578 (13)
H15A	0.5436	0.3960	0.8283	0.069*
O4	0.5077 (3)	0.2196 (2)	0.58662 (15)	0.0508 (8)
O5	0.3983 (3)	0.2030 (2)	0.46817 (16)	0.0588 (9)
C27	0.4606 (4)	0.2578 (3)	0.5222 (2)	0.0405 (10)
C30	0.5377 (4)	0.4530 (3)	0.5701 (2)	0.0384 (10)
C29	0.4429 (4)	0.4323 (4)	0.4403 (2)	0.0388 (10)
C28	0.4816 (4)	0.3832 (3)	0.5108 (2)	0.0344 (9)
C21	0.0943 (4)	-0.0796 (4)	0.4949 (2)	0.0406 (10)
C20	0.1242 (4)	0.0122 (3)	0.5429 (2)	0.0342 (9)
C22	0.0299 (4)	0.0927 (4)	0.5484 (2)	0.0408 (11)
H30	0.565 (3)	0.424 (3)	0.613 (2)	0.040 (12)*
H22	0.049 (3)	0.156 (3)	0.5768 (19)	0.036 (11)*
H21	0.161 (3)	-0.133 (3)	0.4907 (18)	0.033 (10)*
H3WA	0.631 (4)	0.045 (4)	0.534 (3)	0.075 (16)*
H3WB	0.628 (5)	-0.048 (4)	0.568 (3)	0.08 (2)*
H29	0.404 (4)	0.391 (3)	0.401 (2)	0.051 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0429 (3)	0.0306 (3)	0.0290 (3)	-0.0023 (3)	0.0033 (2)	0.0023 (3)
O1	0.0375 (17)	0.0438 (17)	0.0486 (18)	0.0018 (14)	0.0032 (14)	0.0048 (14)
O2	0.0464 (19)	0.059 (2)	0.0369 (17)	-0.0066 (15)	-0.0003 (14)	-0.0121 (15)
O3	0.056 (2)	0.037 (2)	0.045 (2)	-0.0058 (16)	0.0153 (16)	-0.0020 (17)
N1	0.049 (2)	0.0328 (18)	0.0278 (18)	-0.0049 (17)	0.0053 (15)	-0.0004 (16)
C5	0.032 (2)	0.047 (2)	0.029 (2)	-0.003 (2)	0.0049 (17)	0.009 (2)
N3	0.041 (2)	0.059 (2)	0.030 (2)	-0.0001 (17)	0.0070 (16)	0.0010 (17)
N4	0.042 (2)	0.057 (2)	0.035 (2)	-0.0023 (17)	0.0052 (17)	0.0077 (18)
N2	0.042 (2)	0.036 (2)	0.034 (2)	0.0000 (16)	0.0029 (16)	0.0030 (16)

C6	0.037 (2)	0.063 (3)	0.031 (2)	-0.004 (2)	0.0061 (19)	0.010 (2)
C4	0.036 (2)	0.037 (2)	0.038 (2)	-0.0012 (18)	0.0081 (19)	0.0047 (19)
C18	0.033 (2)	0.031 (2)	0.033 (2)	-0.0046 (17)	0.0043 (18)	0.0020 (17)
C12	0.034 (2)	0.049 (3)	0.027 (2)	-0.002 (2)	0.0035 (17)	0.004 (2)
C10	0.054 (3)	0.084 (4)	0.035 (3)	-0.002 (3)	0.009 (2)	-0.001 (3)
C13	0.038 (3)	0.043 (3)	0.030 (2)	-0.0001 (19)	0.0029 (19)	0.0008 (18)
C17	0.032 (2)	0.039 (2)	0.029 (2)	-0.0021 (18)	0.0024 (17)	0.0018 (18)
C19	0.044 (3)	0.046 (3)	0.030 (2)	-0.008 (2)	0.007 (2)	0.013 (2)
C11	0.033 (2)	0.070 (3)	0.030 (2)	-0.002 (2)	0.0035 (19)	0.002 (2)
C1	0.071 (3)	0.035 (3)	0.034 (2)	0.000 (2)	0.009 (2)	-0.003 (2)
C3	0.063 (3)	0.039 (3)	0.043 (3)	0.003 (2)	0.008 (2)	0.013 (2)
C14	0.066 (3)	0.048 (3)	0.039 (3)	0.001 (2)	0.003 (2)	-0.008 (2)
C8	0.060 (3)	0.093 (4)	0.038 (3)	-0.006 (3)	0.000 (2)	0.021 (3)
C2	0.096 (4)	0.031 (2)	0.040 (3)	0.001 (2)	0.007 (3)	0.004 (2)
C16	0.068 (3)	0.036 (3)	0.041 (3)	0.003 (2)	0.006 (2)	0.005 (2)
C9	0.061 (3)	0.092 (4)	0.034 (3)	-0.011 (3)	0.006 (2)	0.001 (3)
C7	0.053 (3)	0.069 (3)	0.040 (3)	-0.005 (2)	0.001 (2)	0.012 (2)
C15	0.090 (4)	0.032 (3)	0.049 (3)	0.006 (2)	0.006 (3)	-0.004 (2)
O4	0.075 (2)	0.0348 (16)	0.0403 (17)	-0.0023 (15)	0.0061 (15)	0.0125 (14)
O5	0.096 (2)	0.0325 (17)	0.0463 (19)	-0.0056 (17)	0.0109 (18)	-0.0029 (15)
C27	0.050 (3)	0.035 (2)	0.041 (3)	0.002 (2)	0.019 (2)	0.004 (2)
C30	0.044 (3)	0.036 (3)	0.034 (2)	0.003 (2)	0.007 (2)	0.012 (2)
C29	0.047 (3)	0.035 (2)	0.035 (2)	-0.005 (2)	0.007 (2)	0.000 (2)
C28	0.037 (2)	0.030 (2)	0.037 (2)	0.0043 (18)	0.0109 (19)	0.0021 (18)
C21	0.039 (3)	0.040 (3)	0.043 (2)	0.004 (2)	0.008 (2)	-0.003 (2)
C20	0.037 (2)	0.037 (2)	0.028 (2)	-0.0051 (19)	0.0049 (18)	0.0017 (18)
C22	0.044 (3)	0.040 (3)	0.038 (3)	-0.006 (2)	0.006 (2)	-0.008 (2)

Geometric parameters (Å, °)

Co1—O4	2.020 (3)	C19—C20	1.505 (5)
Co1—O3	2.080 (3)	C1—C2	1.394 (5)
Col—Ol	2.119 (3)	C1—H1B	0.9300
Co1—N2	2.122 (3)	C3—C2	1.362 (5)
Co1—N1	2.182 (3)	С3—Н3В	0.9300
Co1—O2	2.250 (3)	C14—C15	1.369 (5)
Co1—C19	2.501 (4)	C14—H14A	0.9300
O1—C19	1.275 (5)	C8—C7	1.377 (6)
O2—C19	1.248 (5)	C8—C9	1.404 (7)
O3—H3WA	0.96 (5)	C8—H8A	0.9300
O3—H3WB	0.73 (5)	C2—H2B	0.9300
N1-C1	1.335 (4)	C16—C15	1.389 (5)
N1-C18	1.340 (4)	C16—H16A	0.9300
C5—N4	1.336 (4)	C9—H9A	0.9300
C5—C12	1.426 (5)	C7—H7A	0.9300
C5—C4	1.462 (5)	C15—H15A	0.9300
N3—C12	1.323 (5)	O4—C27	1.257 (4)
N3—C11	1.358 (5)	O5—C27	1.243 (4)
N4—C6	1.358 (5)	C27—C28	1.509 (5)

N2—C16	1.325 (5)	C30—C29 ⁱ	1.381 (5)
N2—C17	1.360 (4)	C30—C28	1.386 (5)
C6—C7	1.404 (5)	С30—Н30	0.85 (3)
C6—C11	1.416 (6)	C29—C30 ⁱ	1.381 (5)
C4—C3	1.397 (5)	C29—C28	1.386 (5)
C4—C18	1.401 (5)	С29—Н29	0.89 (4)
C18—C17	1.460 (5)	C21—C20	1.380 (5)
C12—C13	1.471 (5)	C21—C22 ⁱⁱ	1.394 (5)
C10—C9	1.360 (6)	C21—H21	0.96 (3)
C10—C11	1.422 (5)	C20—C22	1.389 (5)
C10—H10A	0.9300	C22—C21 ⁱⁱ	1.394 (5)
C13—C17	1.389 (5)	C22—H22	0.91 (3)
C13—C14	1.390 (5)		(0)
$04-C_01-03$	86 90 (14)	02-C19-01	120.9 (4)
$04 - C_0 1 - 01$	111 62 (10)	02 - C19 - C20	120.9(4) 120.2(4)
03-01-01	93 07 (12)	01 - C19 - C20	1189(4)
O4-Co1-N2	88 55 (12)	$02 - C_{19} - C_{01}$	63 9 (2)
$O_3 - C_0 - N_2$	123.37 (12)	01-C19-C01	57.9 (2)
O1—Co1—N2	139.90 (12)	C20—C19—Co1	169.5 (3)
O4—Co1—N1	156.75 (11)	N3—C11—C6	122.1 (4)
O3—Co1—N1	87.56 (13)	N3—C11—C10	118.5 (4)
01—Co1—N1	91.21 (11)	C6—C11—C10	119.4 (4)
N2—Co1—N1	75.79 (12)	N1—C1—C2	122.4 (4)
O4—Co1—O2	88.58 (11)	N1—C1—H1B	118.8
O3—Co1—O2	148.78 (12)	C2—C1—H1B	118.8
O1—Co1—O2	60.22 (10)	C2—C3—C4	119.9 (4)
N2—Co1—O2	87.34 (11)	С2—С3—Н3В	120.1
N1—Co1—O2	107.40 (11)	C4—C3—H3B	120.1
O4—Co1—C19	98.53 (12)	C15—C14—C13	119.4 (4)
O3—Co1—C19	120.97 (14)	C15—C14—H14A	120.3
O1—Co1—C19	30.64 (11)	C13—C14—H14A	120.3
N2—Co1—C19	115.53 (14)	C7—C8—C9	121.0 (5)
N1—Co1—C19	103.67 (12)	С7—С8—Н8А	119.5
O2—Co1—C19	29.85 (11)	С9—С8—Н8А	119.5
C19—O1—Co1	91.5 (2)	C3—C2—C1	119.4 (4)
C19—O2—Co1	86.3 (2)	C3—C2—H2B	120.3
Co1—O3—H3WA	112 (3)	C1—C2—H2B	120.3
Co1—O3—H3WB	115 (4)	N2—C16—C15	123.7 (4)
H3WA—O3—H3WB	95 (5)	N2—C16—H16A	118.1
CI-NI-CI8	117.8 (3)	C15—C16—H16A	118.1
CI-NI-Col	126.9 (3)	C10-C9-C8	120.9 (5)
C18—N1—C01	115.2 (2)	C10—C9—H9A	119.6
N4-C5-C12	121.4 (4)	$C_8 = C_7 = C_6$	119.6
$1 \times 4 \longrightarrow C = C + C + C + C + C + C + C + C + C +$	110.3 (4)	$C_{0} = C_{1} = C_{0}$	119.4 (3) 120.2
$C_{12} = C_{3} = C_{4}$	120.1(3)	$C_{0} - C_{1} - \Pi_{A}$	120.5
$C_{12} = N_{3} = C_{11}$	116.7 (4)	C_{14} C14 C15 C16	120.5 118 7 (A)
C_{3} M_{4} C_{0} C_{16} N_{2} C_{17}	110.7 (4)	C_{14} C_{13} C_{10} C_{14} C_{15} H_{15A}	110.7 (4)
010-112-01/	11/.1 (3)	U17-U13-1113A	120.0

C16—N2—Co1	125.9 (3)	C16—C15—H15A	120.6
C17—N2—Co1	116.9 (2)	C27—O4—Co1	133.5 (3)
N4—C6—C7	119.2 (4)	O5—C27—O4	126.5 (4)
N4—C6—C11	121.0 (4)	O5—C27—C28	117.9 (4)
C7—C6—C11	119.8 (4)	O4—C27—C28	115.6 (4)
C3—C4—C18	116.7 (4)	C29 ⁱ —C30—C28	121.5 (4)
C3—C4—C5	123.6 (4)	C29 ⁱ —C30—H30	119 (3)
C18—C4—C5	119.6 (4)	С28—С30—Н30	120 (3)
N1-C18-C4	123.7 (3)	C30 ⁱ —C29—C28	120.4 (4)
N1-C18-C17	116.4 (3)	C30 ⁱ —C29—H29	118 (3)
C4—C18—C17	119.9 (3)	С28—С29—Н29	121 (3)
N3—C12—C5	122.7 (3)	C30—C28—C29	118.0 (4)
N3—C12—C13	117.8 (4)	C30—C28—C27	121.6 (4)
C5—C12—C13	119.5 (3)	C29—C28—C27	120.4 (4)
C9—C10—C11	119.6 (5)	C20—C21—C22 ⁱⁱ	120.8 (4)
C9—C10—H10A	120.2	C20—C21—H21	119 (2)
C11-C10-H10A	120.2	C22 ⁱⁱ —C21—H21	120 (2)
C17—C13—C14	118.1 (4)	C21—C20—C22	119.9 (4)
C17—C13—C12	119.2 (3)	C21—C20—C19	120.7 (4)
C14—C13—C12	122.7 (4)	C22—C20—C19	119.4 (4)
N2	122.9 (3)	C20—C22—C21 ⁱⁱ	119.3 (4)
N2	115.6 (3)	C20—C22—H22	122 (2)
C13—C17—C18	121.5 (3)	C21 ⁱⁱ —C22—H22	119 (2)
O4—Co1—O1—C19	-69.1 (2)	Co1—O2—C19—O1	10.2 (4)
O3—Co1—O1—C19	-157.0 (2)	Co1—O2—C19—C20	-169.0 (3)
N2—Co1—O1—C19	46.2 (3)	Co1—O1—C19—O2	-10.9 (4)
N1—Co1—O1—C19	115.4 (2)	Co1-01-C19-C20	168.4 (3)
O2-Co1-O1-C19	5.9 (2)	O4—Co1—C19—O2	-71.8 (2)
O4—Co1—O2—C19	110.0 (2)	O3—Co1—C19—O2	-163.3 (2)
O3—Co1—O2—C19	28.3 (4)	O1—Co1—C19—O2	169.6 (4)
O1—Co1—O2—C19	-6.1 (2)	N2—Co1—C19—O2	20.6 (3)
N2-Co1-O2-C19	-161.4 (2)	N1—Co1—C19—O2	101.2 (2)
N1—Co1—O2—C19	-87.2 (2)	O4—Co1—C19—O1	118.6 (2)
O4—Co1—N1—C1	-127.2 (4)	O3—Co1—C19—O1	27.0 (3)
O3—Co1—N1—C1	-50.9 (3)	N2—Co1—C19—O1	-149.0 (2)
O1—Co1—N1—C1	42.2 (3)	N1-Co1-C19-O1	-68.4 (2)
N2—Co1—N1—C1	-176.2 (3)	O2—Co1—C19—O1	-169.6 (4)
O2—Co1—N1—C1	101.2 (3)	O4—Co1—C19—C20	43.3 (18)
C19—Co1—N1—C1	70.5 (4)	O3—Co1—C19—C20	-48.2 (18)
O4—Co1—N1—C18	49.1 (5)	O1—Co1—C19—C20	-75.2 (17)
O3—Co1—N1—C18	125.4 (3)	N2—Co1—C19—C20	135.8 (17)
O1—Co1—N1—C18	-141.6 (3)	N1—Co1—C19—C20	-143.6 (17)
N2-Co1-N1-C18	0.1 (3)	O2—Co1—C19—C20	115.2 (18)
O2—Co1—N1—C18	-82.5 (3)	C12—N3—C11—C6	-0.8 (6)
C19—Co1—N1—C18	-113.3 (3)	C12—N3—C11—C10	178.4 (4)
C12—C5—N4—C6	-0.2 (5)	N4—C6—C11—N3	-0.1 (6)
C4 - C5 - N4 - C6	179.3 (3)	C7—C6—C11—N3	180.0 (4)

O4—Co1—N2—C16	18.7 (3)	N4-C6-C11-C10	-179.4 (4)
O3—Co1—N2—C16	104.0 (4)	C7—C6—C11—C10	0.7 (6)
O1-Co1-N2-C16	-104.1 (4)	C9-C10-C11-N3	179.7 (4)
N1—Co1—N2—C16	-178.6 (4)	C9—C10—C11—C6	-1.0 (6)
O2—Co1—N2—C16	-69.9 (3)	C18—N1—C1—C2	-1.2 (6)
C19—Co1—N2—C16	-80.0 (4)	Co1—N1—C1—C2	175.0 (3)
O4—Co1—N2—C17	-164.4 (3)	C18—C4—C3—C2	-2.8 (6)
O3—Co1—N2—C17	-79.0 (3)	C5—C4—C3—C2	177.3 (4)
O1—Co1—N2—C17	72.8 (3)	C17—C13—C14—C15	2.0 (6)
N1—Co1—N2—C17	-1.7 (3)	C12-C13-C14-C15	-178.5 (4)
O2-Co1-N2-C17	107.0 (3)	C4—C3—C2—C1	0.4 (7)
C19—Co1—N2—C17	96.9 (3)	N1—C1—C2—C3	1.8 (7)
C5—N4—C6—C7	-179.5 (4)	C17—N2—C16—C15	2.7 (6)
C5—N4—C6—C11	0.7 (6)	Co1—N2—C16—C15	179.6 (3)
N4—C5—C4—C3	-1.4 (6)	C11—C10—C9—C8	0.0 (7)
C12—C5—C4—C3	178.1 (4)	C7—C8—C9—C10	1.4 (7)
N4—C5—C4—C18	178.6 (3)	C9—C8—C7—C6	-1.6 (7)
C12—C5—C4—C18	-1.9 (6)	N4—C6—C7—C8	-179.3 (4)
C1—N1—C18—C4	-1.5 (6)	C11—C6—C7—C8	0.5 (6)
Co1—N1—C18—C4	-178.1 (3)	C13—C14—C15—C16	-0.8 (7)
C1—N1—C18—C17	178.1 (3)	N2-C16-C15-C14	-1.7 (7)
Co1—N1—C18—C17	1.5 (4)	O3—Co1—O4—C27	82.1 (4)
C3—C4—C18—N1	3.4 (6)	O1—Co1—O4—C27	-10.0 (4)
C5-C4-C18-N1	-176.6 (3)	N2-Co1-O4-C27	-154.4 (4)
C3—C4—C18—C17	-176.1 (4)	N1—Co1—O4—C27	158.6 (4)
C5—C4—C18—C17	3.9 (5)	O2—Co1—O4—C27	-67.0 (4)
C11—N3—C12—C5	1.3 (6)	C19—Co1—O4—C27	-38.8 (4)
C11—N3—C12—C13	-176.9 (3)	Co1—O4—C27—O5	-7.5 (7)
N4—C5—C12—N3	-0.8 (6)	Co1—O4—C27—C28	171.8 (3)
C4—C5—C12—N3	179.7 (3)	C29 ⁱ —C30—C28—C29	-1.2 (7)
N4—C5—C12—C13	177.4 (3)	C29 ⁱ —C30—C28—C27	179.9 (4)
C4—C5—C12—C13	-2.1 (5)	C30 ⁱ —C29—C28—C30	1.2 (7)
N3—C12—C13—C17	-177.7 (4)	C30 ⁱ —C29—C28—C27	-179.9 (4)
C5-C12-C13-C17	4.1 (5)	O5—C27—C28—C30	173.0 (4)
N3-C12-C13-C14	2.8 (6)	O4—C27—C28—C30	-6.3 (6)
C5-C12-C13-C14	-175.4 (4)	O5—C27—C28—C29	-5.9 (6)
C16—N2—C17—C13	-1.3 (6)	O4—C27—C28—C29	174.8 (4)
Co1—N2—C17—C13	-178.5 (3)	C22 ⁱⁱ —C21—C20—C22	0.0 (7)
C16—N2—C17—C18	-179.8 (3)	C22 ⁱⁱ —C21—C20—C19	-177.4 (4)
Co1—N2—C17—C18	3.0 (4)	O2—C19—C20—C21	-173.8 (4)
C14—C13—C17—N2	-1.0 (6)	O1-C19-C20-C21	7.0 (5)
C12—C13—C17—N2	179.5 (3)	Co1-C19-C20-C21	76.3 (18)
C14—C13—C17—C18	177.4 (4)	O2—C19—C20—C22	8.8 (6)
C12—C13—C17—C18	-2.2 (6)	O1—C19—C20—C22	-170.5 (4)
N1—C18—C17—N2	-2.9 (5)	Co1-C19-C20-C22	-101.2 (18)
C4—C18—C17—N2	176.6 (3)	C21—C20—C22—C21 ⁱⁱ	0.0 (7)
N1-C18-C17-C13	178.6 (4)	C19—C20—C22—C21 ⁱⁱ	177.4 (4)

C4—C18—C17—C13 -1.9 (6) Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*, -*z*+1.

Hydrogen-bond geometry	(Å,	%	
------------------------	-----	---	--

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3WA···O1 ⁱⁱⁱ	0.96 (5)	2.00 (5)	2.877 (4)	151 (4)
O3—H3WB···O5 ⁱⁱⁱ	0.73 (5)	1.94 (5)	2.666 (4)	179 (6)
Symmetry codes: (iii) $-x+1, -y, -z+1$.				

Fig. 1

